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A numerical method is presented for calculating the unsteady laminar flow over a circular 
cylinder started impulsively from rest. The governing boundary-layer equations are soived 
by using Keller’s two-point finite-difference method. In regions where the strcamwisc 
velocity develops backflow, the solution scheme is modified by a procedure which accounts 
for the downstream influence. With this modification calculations were carried further in 
time and in space than any of the previous solutions. In parlicular, the calculated local 
skin-friction coeficients and displacement-thickness values agree with those of Helcher 
et a/. Proudman and Johnson, Collins and Dennis, Bar-Lcv and Yang, but do not agree 
with those of Telionis and Tsahalis. 

A major current problem in boundary-layer theory ix to include regions of revcrsc 
crossflow or of backflow in the boundary layer. In two dimensions, the problem is 
associated with separation and leads to three difficulties: (a) the possible appearance 
of a singularity at the point of zero skin friction; (b) numerical instabilities resulting 
from integration opposed to the flow direction; (c) rapid thickening of the boundary 
layer beyond separation. In three dimensions reverse crossflow is common in flows 
over bodies of revolution, wings, ship hulls, etc., even though the flow remains 
attached in the generally accepted terminology. 

There are a number of numerical proccdurcs available for solving the boundary- 
layer equations in thcsc situations (e.g., our aim in this paper is to develop an alter- 
native and hopefully more efficient and accurate method). Of course, separation lines 
may occur and genuine backflow set in beyond them (i.e., both streamwise and cross- 
stream profiles exhibit reverse flow) but we shall not consider such regions. Rather. 
we confine our attention to the crucial questions remaining in the region upstream 
of separation whctc thcrc is reverse crossflow but there is no doubt about the validit! 
of the boundary-layer equations. 

The problem we have chosen to test the new procedure is the unsteady two- 
dimensional laminar flow over a circular cylinder started impulsively from rest. 
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(This flow problem is roughly analogous to a three-dimensional reverse crossflow 
problem if we associate time with the direction of a mainstream with unit velocity 
component. The unsteady boundary layer is then the cross velocity.) This flow has 
received considerable attention in the past, the present state of knowledge being given 
in the recent paper by Bar-Lev and Yang [I]. Since the velocity profile contains regions 
of backflow, for t > 0.320, in which the thickness of the boundary layer rapidly 

increases, the computational problem posed may be viewed as one step more complex 

than the problem of two-dimensional steady flows, and as a good test case to study 
the computational procedures which may eventually be used for steady three- 
dimensional flows in which the crossflow contains regions of backflow. A crucial 
feature of the method used here for dealing with backflow is the introduction of the 
zigzag procedure employed by Krause, Hirschel, and Bothmann [12] into the Box 
method (Keller [l I]) for solving parabolic equations. We note that earlier Phillips and 
Ackerbeg [13] has used a method for computing boundary layers with backflow 
which may be regarded as a different combination of these two procedures. 

In addition, the results are of interest in a wider and more fundamental context. 
First, let us consider briefly the phenomenon of dynamic stall of which a penetrating 
study has been recently published by Carr, McAlister, and McCroskey [5]. It arises 
during the slow oscillation cycle of a pitching airfoil through angles of incidence 
which would provoke stall under steady conditions. Although it is extremely compli- 
cated, depending in a subtle way on a large number of parameters, one characteristic 
feature is the formation of a large vortex near the surface just before the occurrence 
of stall. This vortex is clearly associated with flow reversals in the unsteady boundary 
layer and a reliable method of describing it is a vital feature of any predictive theory 
of dynamic stall. The present studies may be regarded as a step towards such a goal. 

Second, there is a controversy in the literature concerning the occurrence of 
singularities in unsteady boundary layers (Sears and Telionis [17], Riley [15], Bar-Lev 
and Yang [l], Williams [21]). Sears and Telionis have advanced the view that an 
evolving boundary layer can develop a singularity at a specific time 1,) i.e., for f < t, 
the boundary layer may be computed over the entire spatial range of interest but for 
t > t, the integration from the forward attachment point is terminated by the 
appearance of a singularity at some station downstream. The best supporting evidence 
for this suggestion is provided by Bodonyi and Stewartson [4] who studied the growing 
boundary layer between two rotating discs, one of which has its angular velocity 
impulsively reversed in sign. However, the breakdown in the solution is quite different 
from that envisaged by Sears and Telionis since the velocity components and the 
boundary-layer thickness all become infinite together. Sears atid Telionis illustrate 
their ideas with examples the most definite of which is the one studied in this paper. 
-4 numerical investigation has also been carried out by Telionis and Tsahalis [18] 
who conclude that the solution develops a singularity at to N 0.65 at a station 8 N 140” 
from the stagnation point. This result disagrees with the previous studies of Robins, 
reported in Belcher, Burggraf, Cooke, Robins, and Stewartson [2] and of Collins and 
Dennis [8,9]. These authors found no singularity in the solution for t < 1. In our 
calculations, special care was taken to make sure no irregularity was missed.due to 
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coarse numerical procedures but we failed to observe the singularity reported by 
‘?elionis and Tsahalis [18]. Instead we find that the solution is completely smooth for 
all i < 1.4, at which time the calculation was terminated only because the shear layer 
became too thick to handle efficiently by the methods of this paper. In a subseqtient 
paper we hope to describe modifications in the computational procedure which enable 
us to carry out the integration to much larger values of t. 

We consider an incompressible unsteady laminar flow over a circular cylinder 
started impulsively from rest. The governing boundary-layer equations and their 
boundary conditions for this flow are well known; see for example, Cebeci and 
Bradshaw [6]. They are given by 

it\ 
; i ,: 

J’ = 0, 11 L- 2‘ Z 0; 1’ --z CD, II * Ll,(.Yj. (3) 

Starting the flow impulsively from rest leads to a singularity at I = 0. This can be 
avoided by using an appropriate similarity variable: 

77 zzz y/yjJt)l’” (4) 

and the stream function 4 for which 

A dimensionless stream function f(.x, 7, t) is defined by 

y5 = (vt)li’2 Ll,(X)f(X, 7, P). 

Now Eqs. (l)-(3) become (primes denote differentiation with respect to q) 

7 = 0, f =f’ := 0; 77 =-qe, f’ E 1. (3) 

These variables are employed only for some interval 0 -(: t < t, during which the 
boundary layer rapidly develops. For t 2 t * we switch to other dimensionless 
variables Y and F defined by 

Y = y/L, $b = u,L.F(x, I’, t). {9) 
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Equations (l)-(3) now become 

P + 2 [l - (F’)2 + FF”] = g + 2.4, pg - F$), w-9 

Y = 0, F =zz F’ z 0; Y= Y,, F’= 1. (11) 

Here L is a reference length, X, t, and II, are nondimensional quantities defined by x/L, 
u,tIL and u,/u, , respectively, and the primes denote dif?erentiation with respect to Y. 

Initial Conditions 

The solution of the governing equations described above requires initial conditions 
along the (x, y) and (t, JJ) planes. In the former case, they can be obtained from (7), 
which for t = 0, reduces to 

The solution of Eq. (12) subject to (8) is given by 

~~=~erf(+)+-$-[exp(-$)-I], 

f’==erf(-$), f” =-&exp(-$-). 
(13) 

The initial conditions along the (t, f) plane at the forward and rear stagnation points 
can be obtained from (7) and (10). The external flow is given by 

21, = (l/z) sin TX. (141 

Then for t > 0 at x = 0 and n = 1, Eqs. (7) and (10) become 

f” + +f” + tX[l - (.f’)” +.ff”] = t 3) 

8”” + A[1 - (F’)* + FF”] _ ‘;’ , (16) 

whereh=lforx-Oandh=-lforx-1. 

NUMERICAL METHOD 

We use Keller’s two-point finite-difference method (called the Box method) to solve 
the system of equations described in the previous section. The application of this 
method to steady and unsteady two-dimensional flows and to steady three-dimensional 
flows with backflow are described in several references, see for example, Cebeci and 
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Bradshaw [6]. Here we describe its application to unsteady two-dimensional flows 
with backflow following a brief description of the method for flows with no backflow 
(standard Box method). For simplicity we only discuss the numerical method for the 
solution of (7) and (8) for t > 0 and 0 < x < 1. 

Standard Box Method 

To solve (7) and (8) by the standard Box method, we first write (7) in terms of a 
system of first-order equations by introducing new dependent variables u(xi Q t)., 
U(X, ylr t j, that is, 

f’ = u, (17aj 

11’ = 1’, (47b) 

where h 3 t du,jdx. Note that these variables u and zi are new definitions and are not 
related to those defined previously in Eqs. (l)-(4). We next consider the net cube 
shown in Fig. I and denote the net points by 

x, = 0, Xi = Xi-1 + ri ~ 

t, = 0, 4,. = t,-, + k, ) 

To = 0, qj = Tj-1 + hj 

'i-1 'i 

FIG. 1. Net cube for the standard Box method. 

418) 

for values of I; II, and j starting from I, 2 ,..., to I, N, and J, respectively. For the net 
points given by (18), we approximate the quantities (j; U, uj at points (xi f i, : il;iij 
by the net functions denoted by ( f:3n, uj>“, t$,“). Equations (17a) and (17b) are approx- 
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imated using centered difference quotients and averaged about the midpoint 
C-G t, , wld, that is, 

k;l(fy - fjLn,) = l& ) (19a> 
&‘(@ - @J _- $~,z ) (1%) 

where, for example, 

i,n 
Z4jel,9 _= g(uy + u;r_",>. 

The difference equations which are to approximate (17~) are written about the 
midpoint (x.- z 1,2 , tnmllr , Q-& of the cube whose mesh widths are pi , k, , and lzj . 

hfl(z?j - fij-1) + $qj-1 ,iCj--1/2 + X[l - (u”)j-*,J2 + (fv)j-l/z] 

= Pn(CiR - iT&l) + oli[iij-1~~(iif - iii-l) - L;j-l;p(fi -fi-l)], 09c) 

where, for example, 

and 

Here by v? we mean py = $1~‘2 + p-1,n--2 $- Vet”-‘, the sum of the values of Uj 
at three of the four corners of the face of the box. 

Introducing (20) and similar definitions for other terms into (1 SC), after considerable 
algebra, we get 

Here for convenience we have dropped the superscripts i and n and have defined 

The boundary conditions in (8) become 

.fo = 0, u. = 0, u, = 1. (24) 
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The algebraic system given by (19a), (19b), (22) and (24) is nonhnear. To linearize 
it we use Newton’s method and introduce the iterates [j$“‘, ujv), z$‘j, Y = 0, II 2,..,, 
with initial values, say, 

For the higher-order iterates we set 

Then we insert the right-hand sides of these expressions in place of J; , tij , and u, !n 
Eqs. (19a>, (19b), and (22) and drop the terms that are quadratic in (Zjy), Bujv), S$‘). 
This procedure yields the following linear system written in a form identical to that in 
Cebeci and Bradshaw 161: 

Here for convenience we have dropped the superscript II in 6 quantities and have 
defined (~.~)j , (rJj , (r3):; , and (Sl)j-(S,)i by 

(r:)i =A-1 -jfj + hjUj-1!E ) (2&i) 

(!.3jj-1 = Zij-.p - Iij + hjL’j-I;2 ) (2%) 
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(30) 

Similarly the boundary conditions (24) become 

%o = 0, 8u, = 0, 6u, = 0. (30 

Equations (27) and (31) form an implicit linear algebraic system of 3J + 3 equations 
in as many unknowns (fjysL, Use”, z$?“) with i and n > 1. The initial conditions at 
n = 0 for all i are obtained from (13) and those at i = 0 are obtained from the 
solution of (17) and (8) for all y1 > 1. In the latter case, a similar procedure described 
above and in detail in Cebeci and Bradshaw [6] was used to express the differenced 
linearized equations in a form identical to (27) and (31) except now 

The linear systems for Eqs. (17) and (8) are obtained by using the block-elimination 
method discussed by Keller [ll] and by Cebeci and Bradshaw [6]. 

Modfied Box Method 

The solution of the momentum equation (7) and (8) is obtained by the standard Box 
method for a given time t = t, by marching in the x-direction. Since the linearized 
form of the equations is being solved, the solutions are iterated at each x-station until 
a convergence criterion based on the wall-shear parameter f ,z is satisfied, that is, 

I(f ;.y+l - (f3” 1 = 1 Sf$I < 8, . (34) 

Here 6, is a specified number which was set equal to 1O-6 in the calculations. 
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All previous boundary-layer calculations were done for the external velocity distri- 
bution given by 

u, = 2u, sin x. (35) 

whereas ours used (14). The change in the definitions of 81, and x implies that our 
time scale differs from that used previously by a factor of 2. For consistency we shall 
continue to use f for our time and Tfor that of others with 2T = t. 

In order to perform the calculations for a flow with regions of backBow, it is obvious 
that some upstream influence must be allowed when the streamwise velocity changes 
sign. In our problem the first appearance of the flow reversal around the circular 
cylinder occurs at t ; 0.50. For this reason we take t,+ = $ so that flow reversal 
occurs only when we use the physical variables (9)-(1 I). 

The solution of the system (IO), (ll), and (16) for the case when there is no flow 
reversal is very similar to the solution of the system given by (7), (Q and (15). Again 
we introduce new dependent variables U(.Y, I;, t) and r’(x, Y, r) and, with X no,v 
denoting c&/&, we write (10) as 

When there is no Aow reversal, the daerence equations for the above system are very 
similar to those given by (17). As a matter of fact if we replacef, LL and t’ in Eqs. (19)- 
(31) by F, UT and V, we can use the same coefficients (Pl),i-(fa)j and (Sl)j-(Ss)i provided 
that we now redefine y, pri , z:i , and lrj by 

In addition we set yjdl+? in (28c), (29a), and (29b) equal to zero. 
Similarly we can solve (16) and (11) by using the solution algorithm described for 

(15) and (8) again by making minor modifications to those coefhcients given in (32) 
and (33). As before we set the term ~j+r,~ in (32a), (32b)? (33a)!, and (33b) equal to 
zero. We also let pn be given by that in (37) and set x = .h. 

When there is how reversal across the boundary layer at some x and r, then we 
modify our procedure used in the standard Box method for Eq. (36~) but we still keep 
the previous procedure for Eqs. (36a) and (36b) and center them at (xi , t, . ?‘j-l:2) 
to get 
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To write the difference approximations for the Box centered at (x,:-,,,, ,.tn--L1z , Yjmli2) 
we examine previously computed values of UjiL;‘i2. If Uj:;,, >, 0, then we use the 
standard Box method described before. If Uj:$ < 0, then we write (36~) for the Box 
centered at P (see Fig. 2) using quantities centered at P, Q, and R, where 

i - ----- 
t 

l P 

/ 
1’ 

/ 

/’ 

///j ’ 

l R 

/ / 

/.’ 

I 

/ 

FIG. 2. Finite difference molecule for the zigzag dift‘erencing. 

Equation (36~) can then be written as 

V’(P) t JI(P)CI - U”(P) t (FV)(P)] 

= g (P) + u,(P) p(Q) 2 ((2) + @J(R) g (8) 

Here 

0 ~ x-i,, - -xi ) 
-xi+1 - s-1 

The difference equations which are to appro,ximate (40) are 

,;l(Tpz-l/2 _ qyyfi> + hi[l - (q)y;y + (Fv)y$;;:y 

== ,q( u;:", ;* - c$$, 

(40) 

(41) 
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After considerable algebra it can be shown that (42) can be written as 

where again we have dropped the superscripts i and n in the above equation and have 
defined 

The system (38a), (38b), (45), and the boundary conditions 

can again be iinearized by using Newton’s method and be placed in a form identical 
to those given by (27) and (31) except now 
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RESULTS AND DISXJSSION 

The velocity field for a laminar flow over a circular cylinder started impulsively from 
rest has been computed by using both Navier-Stokes equations and by boundary- 
layer equations. The earliest numerical study of the boundary-layer equation was 
carried out by Robins (see Belcher et al. [2]) who found that the skin friction vanished 
at an interior point x,, of (0, 1) for T > T, where T, is a finite positive number. 
(They quote a value of 0.377 for T, which appears to be a misprint; the correct value is 
~0.320.) At T = T, , x, = 1 (the rear stagnation point) and subsequently x0 decreases 
eventually approaching the value 1.82rr-1 given by the steady-state solution (Terril] 
[19]). Their results were obtained by using a Crank-Nicholson implicit method. For 
cases with no backflow, they used the standard form of this method. For cases with 
backflow they modified their scheme by computing the values of z/ at a new station of T 
from the values of u at the t+oo previous stations of T, and neighboring points on the 
x-grid both upstream and downstream. The modified method was thus three tier 
instead of two tier, as their standard method. The time step was 0.025, the x-step 
l/IS (=lO”) and the y-step 0.1. They found it was possible to carry the solution 
procedure forward to T = 1 before the results become too unreliable. In fact, in- 
accuracies began to develop at T = 1 near the stagnation point and spread in both 
directions of x. 

According to a similar study conducted by Telionis and Tsahalis, the time required 
for zero skin friction to appear at the rear stagnation point agrees with the calcu- 
lations of Blasius [3]; that is, T = 0.35. With their numerical method, modified to 
account for the backflow, they determined the location of zero skin friction for later 
times and observed that, for T < 1, their predictions agreed well with those of 
Thoman and Szewczyk [20] based on the solution of Navier-Stokes equations. For 
T > 1.0, they were not able to obtain solutions. For 0.35 < T < 0.65, they calcu- 
lated the flow field up to x r 1 (= 180”). At about T G 0.65, and in the neighborhood 
of x N 0.77 (==140”) they claimed that a singularity appeared and were only able to 
obtain solutions for a few more x-stations beyond the one that corresponds to zero 
skin friction. They attributed this failure to compute more stations in the down- 
stream flow to “a natural response of the boundary-layer model to separation as 
predicted by Sears and Telionis [16] and not to a mere creature of the particular 
numerical procedure adopted.” 

Recently Bar-Lev and Yang [l] solved the full Navier--Stokes equations for the 
same problem by the method of matched asymptotic expansions. Analytical solutions 
for the stream function in terms of exponential and error functions for the inner flow 
field and of circular functions for the outer were obtained to the third order, from 
which a uniformly valid composite solution was found. Their calculated quantities 
which included vorticity, pressure, separation point, and drag agreed well with the 
numerical computations of Collins and Dennis [8,9]. As did Collins and Dennis, 
they observed the zero wall shear to occur at T = 0.322 at the rear stagnation point. 

In the calculations reported here, we first used the standard Box method to calculate 
the flow field for dt = 0.05 and for Ax.- 0.025, corresponding to 41 x-stations 
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spaced 4.5” around the circular cylinder. For t < t, we set d?~ = 0.1, 7a = 10, 
thus taking 101 T-points across the boundary layer. _4t first we chose t, = I and 
switched to the physical variables at t > 1. We let the boundary-layer thickness Ir, 
grow with t with d Y uniform and equal to 0.1. By first using the standard Box method, 
we attempted to quantify the range of possible calculations, with and without back- 
flow. With this standard procedure we were able to calculate the flow field for ah v 
up to and including T = 0.625. At the next time interval, T = 0.65, calculations 
were performed without any signs of trouble up to and including x = 0.85 (=953”). 
At the next station, x = 0.875 (=157”), even though convergence was obtained, the 
asymptotic behavior off” was not satisfactory as Y + Y, , that is, F”(Y%) did not 
approach zero but began to grow. We observed the same behavior at the next station 
x = 0.90, before the solutions diverged at x = 0.925. At T = 0.675, the last c‘good.” 
x-station prior to the unacceptable behavior of S”‘(Ya) was x = 0.80 (~144”)~ which 
decreased to x = 0.775 at T = 0.70 and to x == 0.75 at F = 0.725. 

The next set of calculations were made by choosing t, equal to a and by using ik 

same dx, do, and At-spacing. Thus, in the first stage of the computation, fiow 
reversal does not occur, and in the second stage, for t > $, the calculations were done 
by using the standard Box method with the zigzag differencing scheme. The solutions 
Were obtained with the standard Box method when there were no regions of backflow, 
and were obtained by the zigzag differencing scheme when there were regions of 
backflow. For all practical purposes, the results obtained e,arlier by the standard Box 
scheme agreed extremely well with those obtained by the new procedure except now 
the solutions did not breakdown at those x-stations previously mentioned, and the 
calculations were performed up to x = 1 (~180”) for values of f up to 2.8, The 
calculations up to this t, although they were free of numerical dificttlties and showed 
no signs of trouble, were terminated after this t due to the very rapid thickening of 
boundary-layer thickness with increasing f. For example at x = I, the boundary-layer 
thickness I6 was 10 at t = 1.0 and became 30 at t = 2,5. Since our d Y spacing was 
set at 0.1, calculations required 101 y-points at t = I.0 and 301 points at f =: 2.5 
making the computer storage excessive. Presently, studies are being conducted to 
handle the rapid thickening of the boundary layer at large times so as to extend Lhe 
calculations to much larger values of t without recourse to excessive computer storage. 

Figure 3 shows the local skin-friction coefhcient c, around the circu?ar cylinder for 
different values of T ranging from 0.1 to 1.40. Here ci is defined b\; 

The reference velocity u, is taken equal to I/V in order to compare the present 
predictions with the previous predictions. Note that as T increases, the zero-skin- 
friction point moves from x = 180” to 106.5” at T = 1.40. According to the calcu- 
lations made by Cebeci using the Box method for steady flows (see Cebeci and 
Smith [6]), the separation point on the circular cylinder is x = IOS’, a value which 
agrees closely with Terrill’s value. Thus, the present computed values of cf approach 
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this steady-state value with increasing t. Comparison of cf-values computed by 
Belcher et al. [2] (they present them for values of T = 0.80 and 1.0) and by Collins 
and Dennis [S, 91 (they present them for values of T = 0.2, 0.4, 0.6, 0.8, 1.0) and by 
Bar-Lev and Yang [l] shows that they are in excellent agreement with those com- 
puted by the present method for 0” < x < 180”. 

3 

2 

Cf 

1 

T = 0.1 

FIG. 3. Computed c, values for the circular cylinder. 

Figure 4 shows the dimensionless displacement thickness 6*/L around the circular 
cylinder for different values of T ranging from 0.1 to 1 .O. Here 6’” is defined by 

S” = Irn (1 - U/I&) dy. (51) 
0 

Belcher et al. also computed the present 6*/L values for T < 0.70 for all x and for 
T = 1.0 for x up to 130”. Comparison of our computed 6*-values again agree quite 
well with their computed values, 



Frc. 4. Calculated displacement thickwss values for the circu!ar cylinder. 

Figure 5 shows the variation of the wall-shear parameter -F,i at the forward (.x = 0) 
and rszr (x G-X I) stagnation points as a function of time. Here P;;:: is defined by 

As is seen, these results appear to agee reasonably well with the predictions or” 
Proudman and Johnson [Id] that the slope of the waU-shear parameter at x = 0 
should tend to the same value as the slope at x - 1 as I becomes large. The results 
in Fig, 5a show that, at x :- 0, Fi reaches its steady state value of 1.23259 rapid@: 
whereas the results in Fig. 5b show that at x = 7 the approach of Et: to its steady-state 
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-1 .a259 

-1.5L 

FIG. 5. Variation of wall shear parameter Fz as a function of T. (a) Forward stagnation point 
(x = 0); (b) rear stagnation point (x = 1). 

value is comparatively slow. It is noted that the wall shear first becomes zero at 
T = 0.320 close to that predicted by Goldstein and Rosenbead [IO] (T = 0.32) 
and Bar-Lev and Yang [I] (T = 0.322), but significantly different from that by 
Telionis and Tsahalis [18] (T = 0.35). 
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Figure 6 shows the computed velocity protiles at various locations on the cylinder, 
including the rear stagnation point for various values of T,. As is seen, the region of 
backflow is quite small at small values of x and T (as expected) and becomes quite 
large with increasing s and T. 

20 

FIG. 6. Velocity profiles at the rear stagnation point. 

Figure 7 shows the trajectory of the zero wall shear around the circular cyhnder as 
a function of time for values of T up to 1.40. Also shown in Fig. 1 are the results of 
Telionis and Tsahalis [1X]. We also show, in Fig. 1: the results obtained by the 
standard Box method for 0 < T < 0.75. It is interesting to note that even the un- 
modified Box method can carry the calculations further downstream than those 
obtained by the numerical method used by Telionis and Tsahalis. 

Bar-Lev and Yang [l] present a summary of zero wall shear as a function of sn& 
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FIG. 7. Position of zero skin friction as a function of time. The symbols A A denote time and 
position where the solutions of Telionis and Tsahalis (1974) break down, the symbol o denotes the 
solutions of Tehonis and Tsahalis (1974) for zero skin friction. No breakdown was observed in the 
present calculations. 

TABLE I 

Comparison of Zero Wall Shear around the Circular Cylinder 

Investigator 180 166 146 138 124 110 

Collins and Dennis [S] 0.322 0.331 0.39 0.43 0.589 0.90 

Collins and Dennis [9] 0.322 0.33 0.39 0.42 0.59 1.10 

Sears and Telionis [17] 0.35 0.36 0.40 0.45 0.60 1.11 

Bar-Lev and Yang [l] 0.322 0.330 0.389 0.438 0.602 1.089 
Present 0.320 0.330 0.390 0.436 0.596 1.10 

and time as computed by Collins and Dennis [S, 91, Sears and Telionis 1191, and by 
them. Table I shows a comparison of our calculated values with them. Overall the 
agreement is quite good except for the initiation of zero wall shear at the rear stagna- 
tion point. 



LAMINAR BOUNDARY LAYER 

CONCLUDING REMARKS 

The new method of computation proposed here for boundary layers in which 
reversed crosshow can occur, namely, a combination of the Keller Box scheme with 
a zigzag procedure, has been applied to an equivalent problem-namely, the unsteady 
boundary layer over an impulsively started circular cylinder. At moderate times the 
results agree well with the pr-evious studies reported by Proudman and Johnson [l4], 
Belcher et al. [2], Collins and Dennis [8,9], and Bar-Lev and Yang [I] and we are 
able to extend the calculations for the entire boundary layer to higher values of T 
than were possible previously. The difficulty about extending the computation even 
further is not now associated with flow reversal which the zigzag scheme seems tc 
handle satisfactorily. The limitation is provided by the rapid increase of thickness of 
the boundary layer in the reversed flow region which makes the computations there 
increasingly uneconomical. 

An important result of this paper is to reinforce the conclusions of the authors 
cited in the previous paragraph that this unsteady boundary layer is free of singu- 
larities for T < 1.4 and to suggest most strongly that it is smooth for al! finite time 
even though its thickness is likely to increase exponentially for Z-.X > 1.82. N’e 
contend, that, so far as unsteady boundary layers governed by the Eqs. (l)-(3) are 
concerned, there is no justification for the claim of Sears and Telionis [17] that they 
can develop a singularity at a finite value of T and that, on the contrary, solutions 
exist for all 27 Consequently, the theory can be applied to such important problems 
of engineering design as dynamic stall provided a suitable method can be found to 
handle the exponential growth of the boundary-layer thickness and we shah investigate 
this in the near future. 
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